Pular para o conteúdo principal

Gastamos a maior parte da nossa energia só para ficarmos vivos


Se você pegar qualquer embalagem de alimento na sua dispensa, vai encontrar uma tabela de valores nutricionais impressa. Indicada com um asterisco, aparece a seguinte frase: “% valores diários de referência com base em uma dieta de 2.000 (ou 2.500) kcal”. Mas de onde surgiu esse valor?

O quanto uma pessoa gasta de energia (e assim o quanto de energia precisa ser reposta pela comida) já foi medido em diversos estudos, até se obter um valor médio e geral. Isso pode ser feito de algumas formas. A primeira, mais antiga, era feita através da medida de quanto oxigênio uma pessoa usa. Mas essa forma era um pouco restrita porque a pessoa estudada precisava ficar ligada aos aparelhos de medida no laboratório, o que tornava a medida bem diferente da realidade do mundo lá fora. Mas medida de consumo de oxigênio ainda é bem útil para se medir o gasto de energia no metabolismo basal (ou seja, a energia que gastamos sem fazer nada, apenas vivendo): a pessoa faz um jejum de 12 horas (igual para exame de sangue) e fica sentada, quietinha, numa sala a 28 °C. Nessas condições, o único gasto de energia que você tem é para viver.

Outra forma de medir o quanto gastamos de energia é usando água duplamente marcada. Que raios é isso? Bem, a água é feita de hidrogênio e oxigênio, H2O, certo? Mas existem diversos tipos de hidrogênio e de oxigênio, um muito mais comum e outros muito mais raros. O hidrogênio mais comum (1H) é o prótio, e um dos raros é o deutério (2H). O oxigênio mais comum é o 16O, e um dos raros é o 18O. Assim, a água no nosso corpo é basicamente 1H216O, e a água duplamente marcada é 2H218O. Como a água duplamente marcada é usada então? A pessoa vai ao laboratório e coletam um pouco de sangue dela. Depois ela toma um corpo com água duplamente marcada, e vai para casa viver a vida. De tempos em tempos, ele tem que coletar alguma amostra (pode ser sangue, saliva, urina...). Nessas amostras é medido o quanto de 2H e de 18O foi perdido nesse tempo. O H é perdido na água, que deixa o corpo pela respiração, suor, urina, enquanto o O é perdido na água e no gás carbônico que sai na respiração. Com essas informações, é possível calcular o quanto de gás carbônico o corpo produziu nesse tempo, e isso é diretamente ligado à quantidade de energia gasta. Dessa forma é possível saber qual é o gasto de energia total de uma pessoa.

Se nós diminuirmos o gasto de energia para ficar vivo do gasto de energia total, vamos obter o quanto de energia gastamos com atividade física (temos que descontar também o quanto gastamos de energia para digerir o que comemos, mas isso é estimado em 10 % do total). E o quanto temos de cada coisa?

De 60 % a 70 % da energia é gasta para ficarmos vivos. E esse valor é basicamente constante durante toda a vida. Não existem evidências concretas de diferenças entre etnias e o metabolismo basal também não é alterado se uma pessoa sai dos trópicos para viver em uma região temperada. Mas existe uma grande diferença entre as pessoas, que pode chegar a até 20 %, o que explica porque existem pessoas que comem feito capivaras raivosas com lombrigas e ainda assim não engordam.

Só de 20 % a 35 % da energia é gasta em atividade física diária, não necessariamente na academia, mas qualquer atividade: andar, ficar em pé, e por aí vai. Mesmo em atletas profissionais esse gasto fica abaixo de 50 % do total. Os pesquisadores descobriram que existe uma forte influência genética nesse gasto; cerca de 70 % do gasto de energia com atividade física é derivado dos seus genes (podemos considerar a existência dos “genes que dão vontade de ir para a academia” (eu não tenho nenhum)). Os valores desse gasto de energia não mudaram nos últimos 20 anos, o que mostra que a epidemia de obesidade não parece estar relacionada a uma redução no gasto de energia com atividade física. Também não existe diferença entre o mundo desenvolvido e em desenvolvimento, novamente mostrando que o gasto de energia não é responsável pelo maior número de pessoas obesas nos países ricos. Além disso, se compararmos nosso gasto de energia com mamíferos selvagens, vamos ver que eles são bem parecidos. Isso indica que não foram os avanços tecnológicos que nos deixaram gordos.

Então, se o gasto de energia não é responsável pela obesidade, quem é? A nossa alimentação, rica em calorias, açúcar e gordura.

Referências

SHETTY, P. Energy requirements of adults. Public Health Nutrition, v. 8, n. 7A, p. 994–1009, 2005.

WESTERTERP, K. R. Physical activity and physical activity induced energy expenditure in humans: Measurement, determinants, and effects. Frontiers in Physiology, v. 4, p. 90, 2013.

Comentários

Postagens mais visitadas deste blog

Não, suco de melão São Caetano não é a cura do câncer

Recebi pelo Facebook um link para uma postagem do blogue Cura pela Natureza . Lá é descrito o poder de uma planta medicinal capaz de curar o câncer, controlar o diabetes e, de quebra, fortalecer a imunidade do corpo. Sinistro, né? A planta em questão é chamada de melão São Caetano ou melão amargo. Conhecida cientificamente como Momordica charantia , essa planta faz parte da família Cucurbitaceae, junto com outras plantas famosas, como a abóbora, o pepino e a melancia. Ela cresce bem nas áreas tropicais e subtropicais da África, Ásia e Austrália, e foi trazida ao Brasil pelos escravos. O texto cita o Dr. Frank Shallenberger, dos Estados Unidos, que seria o descobridor dos efeitos medicinais da planta. Fui então atrás das pesquisas publicadas pelo Dr. Shallenberger para saber mais sobre os poderes do melão São Caetano. E descobri que ele nunca publicou nenhum trabalho científico sobre a planta (na verdade, ele nunca publicou qualquer coisa!). Como que a

Não, a fosfoamina não é (ainda) a cura do câncer

Em agosto desse ano, uma reportagem do portal G1 mostrou a luta de pacientes com câncer na justiça para receber cápsulas contendo o composto fosfoamina (na verdade, fosfoetanolamina) que supostamente curaria a doença. O “remédio” era produzido e distribuído pelo campus da Universidade de São Paulo na cidade de São Carlos, mas a distribuição foi suspensa por decisão da própria reitoria, já que o composto não é registrado na ANVISA (todo remédio comercializado no país deve ser registrado) e não teve eficiência comprovada. Porém, alguns dos pacientes tratados com a fosfoamina relatam que foram curados e trazem exames e outras coisas para provar. Segundo o professor aposentado Gilberto O. Chierice (que participou dos estudos com a substância), “A fosfoamina está aí, à disposição, para quem quiser curar câncer”. Mas, vamos devagar, professor Gilberto; se a fosfoamina realmente é a cura para o câncer, por que não foi pedido o registro na ANVISA? O Governo Federal poderia produzir gran

Dr. José Roberto Kater e o ovo: vilões ou mocinhos?

Ontem, eu recebi pelo Facebook um vídeo de uma entrevista com o Dr. José Roberto Kater onde ele comenta sobre os benefícios do ovo na alimentação. Porém, algumas coisas me soaram um pouco, digamos, curiosas (na verdade, em pouco mais de três minutos de vídeo poucas coisas pareceram normais (o vídeo completo está disponível no fim do texto)). O Dr. Kater é, segundo a Internet, médico, obstetra, nutrólogo, antroposófico (a medicina antroposófica é um ramo alternativo com base em noções ocultas e espirituais), homeopata, acupunturista e com mais algumas outras especialidades. Porém, não é cientista, já que não tem currículo cadastrado na Plataforma Lattes (do Conselho Nacional de Pesquisa e Desenvolvimento, CNPq) ou assina qualquer artigo científico indexado em banco de dados internacional. Para mim, o cara pode dizer que é o Papa, eu não vou acreditar nele de primeira. As informações científicas estão disponíveis e eu fui pesquisar para entender se o Dr. Kater é um visionário ou ch